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spectral stochastic finite element method (SSFEM) is the most popular method due to its
fast convergence rate. Recently, the stochastic sparse grid collocation method has emerged
as an attractive alternative to SSFEM. It approximates the solution in the stochastic space
using Lagrange polynomial interpolation. The collocation method requires only repetitive
calls to an existing deterministic solver, similar to the Monte Carlo method. However, both

Ié?l/lvggarfisc;n the SSFEM and current sparse grid collocation methods utilize global polynomials in the
Stochastic partial differential equations stochastic space. Thus when there are steep gradients or finite discontinuities in the sto-
Sparse grid chastic space, these methods converge very slowly or even fail to converge. In this paper,
Hierarchical multiscale method we develop an adaptive sparse grid collocation strategy using piecewise multi-linear hier-
Adaptive sparse grid archical basis functions. Hierarchical surplus is used as an error indicator to automatically
Discontinuities detect the discontinuity region in the stochastic space and adaptively refine the collocation
Smolyak algorithm points in this region. Numerical examples, especially for problems related to long-term

integration and stochastic discontinuity, are presented. Comparisons with Monte Carlo
and multi-element based random domain decomposition methods are also given to show
the efficiency and accuracy of the proposed method.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

To accurately predict the performance of physical systems, it becomes essential for one to include the effects of input
uncertainties into the model system and understand how they propagate and alter the final solution. The presence of uncer-
tainties can be modeled in the system through reformulation of the governing equations as stochastic ordinary/partial dif-
ferential equations (SODEs/SPDEs). The traditional approach for solving SODEs/SPDEs is the Monte Carlo (MC) method. This
approach gives access to the complete statistics of the solution. It does not approximate the solution space and its conver-
gence rate does not depend on the number of independent input random variables. Furthermore, MC methods are very easy
to implement given a working deterministic code. However, the statistical approach becomes quickly intractable for com-
plex problems in multiple random dimensions. This is because the number of realizations required to acquire good statistics
is usually quite large. Furthermore, the number of realizations changes with the variance of the input parameters and the
truncation errors are hard to estimate. This has in part been alleviated by improved sampling techniques like Latin hyper-
cube sampling [1].
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A more recent approach in modeling uncertainty is based on the spectral stochastic finite element method (SSFEM) [2]. In
this method, we project the dependent variables of the model onto a stochastic space spanned by a set of complete orthog-
onal polynomials and then a Galerkin projection scheme is used to transform the original stochastic problem into a system of
coupled deterministic equations. These polynomials are functions of a set of random variables &(0) where 0 is a realization of
the random event space. In the original work of Wiener [3], Gaussian random variables were used with Hermite polynomials.
Some of the early applications of SSFEM are presented in [2,4-6]. This scheme has been extended to include other random
distributions leading to generalized polynomial chaos expansions (gPC) [7]. The gPC was successfully applied to model
uncertainty propagation in various applications [8-10]. Error bounds and convergence studies [11] have shown that these
methods exhibit fast convergence rates with increasing orders of expansions. These convergence studies assume that the
solution is sufficiently smooth in the random space. Also, the computed absolute error may become unacceptably large dur-
ing long-term integration. In addition, when the solution exhibits a discontinuous dependence on the input random param-
eters, the gPC may converge slowly or even fail to converge. This is due to the global polynomial expansion used in the gPC
which cannot resolve the local discontinuity in the random space, the well-known Gibbs phenomenon which occurs in spec-
tral decompositions of discontinuous functions.

Thus, more efficient and robust schemes are needed to address the presence of discontinuities in the solution in the ran-
dom space. In [11-13], finite element basis functions were used in the random space to approximate locally the stochastic
dependence of the solution. In [14], the authors have successfully applied this method to capture unstable equilibrium in
natural convection. The wavelet basis expansion method was also utilized to address this problem [15,16]. The multi-ele-
ment generalized polynomial chaos method (ME-gPC) was introduced to address discontinuities in the random space while
preserving the convergence rate of the gPC method [17-19]. The main idea of the ME-gPC method is to decompose the space
of random inputs into disjoint random elements, then employ a gPC expansion in each element. All of the above methods
employ a Galerkin projection in the random space to transform the corresponding stochastic equations to a set of determin-
istic algebraic equations. The coupled nature of the resulting equations for the unknown coefficients in the spectral expan-
sion makes the solution of the stochastic problem extremely complex as the number of stochastic dimensions and/or the
number of expansion terms increase, the so called curse of dimensionality. In fact, computational complexity of the problem
increases combinatorially with the number of stochastic dimensions and the number of expansion terms. In addition, it is
required to develop a stochastic simulator, which is a non-trivial task especially if the underlying ODEs/PDEs have compli-
cated non-linear terms.

There have been recent efforts to couple the fast convergence of the Galerkin methods with the decoupled nature of MC
sampling, the so called stochastic collocation method. This framework represents the stochastic solution as a polynomial
approximation. This interpolant is constructed via independent function calls to the deterministic problem at different inter-
polation points. This strategy has emerged as a very attractive alternative to the spectral stochastic paradigm. However, the
construction of the set of interpolation points is non-trivial, especially in multi-dimensional random spaces. In [20], a meth-
odology was proposed wherein the Galerkin approximation is used to model the physical space and a collocation scheme is
used to sample the random space. A tensor product rule was used to interpolate the variables in stochastic space using prod-
ucts of one-dimensional (1D) interpolation functions based on Gauss quadrature points. Though this scheme leads to the
solution of uncoupled deterministic problems as in the MC method, the number of realizations required to build the inter-
polation scheme increases as power of the number of random dimensions. On the other hand, the sparse grid resulting from
the Smolyak algorithm depends weakly on dimensionality [21]. Sparse grids has been applied in many fields, such as high-
dimensional integration [22], interpolation [23-25] and solution of PDEs [26]. For an in depth review, the reader may refer to
[27]. In [28-30], the authors used the Smolyak algorithm to build sparse grid interpolants in high-dimensional stochastic
spaces based on Lagrange interpolation polynomials. Using this method, interpolation schemes can be constructed with or-
ders of magnitude reduction in the number of sampled points to give the same level of approximation (up to a logarithmic
factor) as interpolation on a uniform grid.

Error estimates for Smolyak algorithm based stochastic collocation methods have been given in [29,30], where assuming
smoothness of the solution in random space they were shown to achieve fast convergence, similar to stochastic Galerkin
methods. However, it is noted that some stochastic sparse grid collocation methods, e.g. [28,30], utilize the Lagrange poly-
nomial interpolant, which is a global polynomial basis in the random space. Therefore, as is the case with gPC that uses
orthogonal global polynomials, these methods fail to capture local behavior in the random space. To this end, we concentrate
on stochastic collocation strategies which utilize basis functions with local support, the same idea as in [11-13,15-17], in
order to resolve successfully discontinuities in the random space. In addition, we also seek for an adaptive collocation strat-
egy which can refine the sparse grid only locally around the discontinuity region. It is noted that, for the current existing
polynomial interpolation methods, e.g. [28,30], the set of interpolation points are either Clenshaw-Curtis or Gaussian quad-
rature points, which are pre-determined. So this leads to grids with no substantial room for adaptivity.

Therefore, an adaptive framework utilizing local interpolant/basis functions offers greater promise in efficiently and accu-
rately representing high-dimensional non-smooth stochastic functions. Towards this idea, the authors in [17] proposed an
adaptive version of the ME-gPC, where decay rate of local variance was used as an error indicator to adaptively split the ran-
dom element into two parts along each dimension similar to the h-adaptive approach in the deterministic finite element
method. In order to utilize the decoupled nature of the collocation algorithm, they later extended this method to the mul-
ti-element probabilistic collocation method (ME-PCM), where tensor product or sparse grid collocation is used in each ran-
dom element [31]. Then the collocation solution is projected back onto the PC basis such that one can employ the same
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adaptive criterion as in ME-gPC. These are still dimension-dependent methods, where the number of random elements in-
creases fast with the number of random dimensions. The same problem also exists for the Stochastic Galerkin [13] and Wie-
ner-Haar expansion [16] methods. Thus, there is also a need for an adaptive framework that scales linearly (O(N)) with
increasing dimensionality instead of the (O(2")) scaling of current adaptive stochastic methods, where N is the stochastic
dimension. In this paper, we utilize a piecewise multi-linear hierarchical basis sparse grid interpolation approach towards
adaptivity that addresses the issues of locality and curse-of-dimensionality. This borrows ideas directly from wavelet-based
representation of functions [26,32-35], where the coefficients of the representation are used as error indicators. However, in
[32-35], the multi-dimensional interpolation grid is constructed through tensor product of one-dimensional wavelet expan-
sions and therefore it is not suitable for high dimensions. The method introduced in this work is different from the adaptive
wavelet method since it employs a different adaptation strategy based on the Smolyak algorithm for constructing the inter-
polation grid. The basic idea here is to use a piecewise linear hat function as a hierarchical basis function by dilation and
translation on equidistant interpolation nodes. Then the stochastic function can be represented by a linear combination
of these basis functions. The corresponding coefficients are just the hierarchical increments between two successive inter-
polation levels (hierarchical surpluses) [24,27]. The magnitude of the hierarchical surplus reflects the local regularity of the
function. For a smooth function, this value decreases to zero quickly with increasing interpolation level. On the other hand,
for a non-smooth function, a singularity is indicated by the magnitude of the hierarchical surplus. The larger this magnitude
is, the stronger the singularity. Thus, the hierarchical surplus serves as a natural error indicator for the sparse grid interpo-
lation. When this value is larger than a predefined threshold, we simply add the 2N neighboring points to the current point. A
key motivation towards using this frameworKk is its linear scaling with dimensionality, in contrast to the N-dimensional tree
(2M) scaling of the h-type adaptive framework (e.g. the framework in [17]). In addition, such a framework guarantees that a
user-defined error threshold is met. We will also show that it is rather easier with this approach to extract realizations, high-
er-order statistics, and the probability density function (PDF) of the solution.

It is noted here that, in previous works, there exists the so called dimension-adaptive (anisotropic) sparse grid methods
employing the concept of generalized sparse grids, which was originally developed in [36] and further extended to interpo-
lation in [25]. In recent papers [37,38], the authors have applied this method to various stochastic problems. In this frame-
work, the structure of the solution was detected on-the-fly to sample the space in a non-isotropic way. The most sensitive
dimension is detected and adaptively sampled. Then all of the interpolation points from the next level are added along this
dimension. Error bounds and convergence issues for the anisotropic sparse grid collocation technique are discussed in [38].
However, this framework requires the underlying discontinuity aligned along the lines of the underlying sparse grid, which
is not the case in most problems. The method introduced in this paper is different from the above adaptive strategy. We only
add locally around the current point the 2N neighboring points from the next interpolation level instead of all of the inter-
polation points along only one dimension. In this way, besides the detection of important dimensions, additional singular-
ities and local variations in a stochastic function can be found and resolved [26,27,39]. It is also noted that the work in [38]
uses Lagrange polynomial interpolation and thus cannot resolve discontinuities.

The contribution of this work is as follows: (1) We utilize the concepts of hierarchical sparse grid collocation. This pro-
vides a new point of view on the sparse grid collocation method leading to the concept of adaptivity; (2) We develop a locally
refined adaptive sparse grid collocation method with 2N linear scaling for the refinement, which further reduces the curse of
dimensionality; (3) By purely based on the interpolation, it is shown that this method not only can calculate easily the mean
and the variance, but also can extract the realization of the solution as a function of the random variables in order to examine
its local behavior. This is another issue not addressed in earlier works [28-31,37,38].

This paper is organized as follows: In the next section, the mathematical framework of SODEs/SPDEs is formulated. In
Section 3, the conventional sparse grid collocation (CSGC) and adaptive sparse grid collocation (ASGC) methodologies are
detailed. The numerical examples are given in Section 4. Finally, concluding remarks are provided in Section 5.

2. Problem definition

In this section, we follow the notation in [28,30]. Define a complete probability space (2, F,P) with sample space Q
which corresponds to the outcomes of some experiments, 7 c 22 is the ¢-algebra of subsets in € (these subsets are called
events) and P : F — [0, 1] is the probability measure. Also, define D as a d-dimensional bounded domain D c R? (d = 1,2,3)
with boundary 0 D. We are interested to find a stochastic function u : Q x D — R such that for P-almost everywhere (a.e.)
w € Q, the following equation holds:

L(x,m;u) =f(x,0), VxeD (1)
and
B(x;u) = g(x), VYxedD, (2)

where x = (x4, . .,x4) are the coordinates in R?, £ is (linear/non-linear) differential operator, and B is a boundary operator. In
the most general case, the operators £ and B as well as the driving terms f and g, can be assumed random. We assume that
the boundary has sufficient regularity and that f and g are properly defined such that the problem in Egs. (1) and (2) is well-
posed P - a.e. w € Q.
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2.1. The finite-dimensional noise assumption and the Karhunen-Loéve expansion

Any second-order stochastic process can be represented as a random variable at each spatial and temporal location.
Therefore, we require an infinite number of random variables to completely characterize a stochastic process. This poses
a numerical challenge in modeling uncertainty in physical quantities that have spatio-temporal variations, hence necessitat-
ing the need for a reduced-order representation (i.e., reducing the infinite-dimensional probability space to a finite-dimen-
sional one). Such a procedure, commonly known as a ‘finite-dimensional noise assumption’ [20,28], can be achieved through
any truncated spectral expansion of the stochastic process in the probability space. One such choice is the Karhunen-Loéve
(K-L) expansion [2].

For example, let the force term f{x, ) be a second-order stochastic process, and its correlation function be R(x;, x;), where
X7 and x; are spatial coordinates. By definition, the correlation function is real, symmetric, and positive definite. All its eigen-
functions are mutually orthonormal and form a complete set spanning the function space to which f{x, ) belongs. Then the
truncated K-L expansion takes the following form:

N
fx,0) =Ef]®) + > Vadi(®)Yi(w), (3)
i=1

where {Y;(w)}", are uncorrelated random variables. If the process is a Gaussian process, then they are standard identically
independent N(0, 1) Gaussian random variables. Also, ¢;(x) and /; are the eigenfunctions and eigenvalues of the correlation
function, respectively. They are the solutions of the following eigenvalue problem:

/D R(%1, %), (%:) % = 2ty (21 ). (4)

The number of terms needed to approximate a stochastic process depends on the decay rate of the eigenvalues. Generally, a
higher correlation length would lead to a rapid decay of the eigenvalues.

Following a decomposition such as the K-L expansion, the random inputs can be characterized by a set of N random vari-
ables, e.g.

['(X7 w; u) = [’(x’ Yl (w)7 EER) YN((’O)* u)7

f(X,CO) :f(x>yl(w)7“'7YN(w))' (5)
Hence, by using the Doob-Dynkin lemma [40], the solution of Egs. (1) and (2) can be described by the same set of random
variables {Y;(w)}Y,, i.e.

u(x,m) =uX,Yi(w),...,Yn(m)). (6)
Thus, the use of the spectral expansion guarantees that the finite-dimensional noise assumption is satisfied and effectively
reduces the infinite probability space to a N-dimensional space.

When using the K-L expansion, we here assume that we obtain a set of mutually independent random variables. The issue

of non-independent random variables can be resolved by introducing an auxiliary density function [20]. In this work, we
assume that {Y;(w)}", are independent random variables with probability density function p;j. Let I'; be the image of Y;. Then

N
p(Y)=]]p(Ys), WerI (7)
i=1
is the joint probability density of Y =(Yj,...,Yy) with support

Fzﬂne RN (8)

i=1
Then the problem in Egs. (1) and (2) can be restated as: Find the stochastic function u: I' x D — R such that
cxY;u)=fxY), *Y) eDxTI (9)
subject to the corresponding boundary conditions
Bx,Y;u) =g(xY),xY) edD xTI. (10)

We emphasize here that the dimensionality N of the space I' is usually determined by the number of the independent ran-
dom variables Y;, for example from the K-L expansion in Eq. (3). In addition, we also assume without loss of generality that
the support of the random variables Y; is I'' = [0, 1] for i = 1,...,N and thus the bounded stochastic space is a N-hypercube
I'=[0, 1]", since any bounded stochastic space can always be mapped to the above hypercube.

Therefore, the original infinite-dimensional stochastic problem is restated as a finite-dimensional problem. Then we can
apply any stochastic method (gPC expansion or stochastic collocation) in the random space and the resulting equations be-
come a set of deterministic equations in the physical space that can be solved by any standard deterministic discretization
technique, e.g. the finite element method. The theory and properties of the gPC expansion have been well documented in
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various references [2,7,9]. The regularity of the solution with respect to the stochastic space I" affects the convergence rate of
such stochastic techniques, especially of approximations of global support. However, such regularity is usually not known a
priori in many problems. This has motivated the development of the multi-element based stochastic domain decomposition
method. The basic idea is to divide the stochastic space into several disjoint elements and solve each subproblem using gPC
or conventional probabilistic collocation method, which results in the ME-gPC and ME-PCM methods, respectively. The adap-
tive procedure for these methods can be found in [17,18,31]. Local variance is used as an indicator for adaptivity. A param-
eter 0, is defined to identify which element is to be refined and another parameter 6, is set to determine in which dimension
the element is going to split. These problems are addressed in this work using the adaptive stochastic sparse grid collocation
method which is introduced in the following section.

3. Stochastic collocation method

The basic idea of this method is to have a finite element approximation for the spatial domain and approximate the multi-
dimensional stochastic space using interpolation functions on a set of collocation points {Y;}", € I'. Suppose we can find a
finite element approximate solution u of the deterministic solution of the problem in Eqgs. (9) and (10) for each point Y;, we
are then interested in constructing an interpolant of u by using linear combinations of the solutions u(-,Y;). The multi-dimen-
sional interpolation can be constructed through either full-tensor product of 1D interpolation rule or by the so called sparse
grid interpolation method based on the Smolyak algorithm [21]. Since in the full-tensor product case the number of support
points grows very quickly as the number of stochastic dimensions increases, we will mainly focus on the sparse grid method
and discuss the proposed adaptivity algorithm.

3.1. Smolyak algorithm

The Smolyak algorithm provides a way to construct interpolation functions based on a minimal number of points in mul-
ti-dimensional space. Using the Smolyak method, univariate interpolation formulae are extended to the multivariate case by
using tensor products in a special way. This provides an interpolation strategy with potentially orders of magnitude reduc-
tion in the number of support nodes required. The algorithm provides a linear combination of tensor products chosen in such
a way that the interpolation error is nearly the same as for full-tensor product in higher dimensions.

Let us consider a smooth function f : [0, 1] — R. In the 1D case (N = 1), we consider the following interpolation formula to
approximate f:

SR an

j=1
with the set of support nodes
X' ={YjlYje[0,1] forj=12,... m}, (12)

whereie N, aJ'i = aj(Y;) € C(]0, 1)) are the interpolation nodal basis functions, and m; is the number of elements of the set X.
We assume that a sequence of formulae Eq. (11) is given with different i. In the multivariate case (N > 1), the tensor product
formulae are

U@ ou)(f Z ZfY“ LYY (@ @ a), (13)

=1 jn=

which serve as building blocks for the Smolyak algorithm.
The Smolyak algorithm constructs the sparse interpolant Aqy using products of 1D functions. Aqy is given as [23-25]

. /N-1 . )
A=Y (Tt < . ) U - UY) (14)
q-N+1<lil<q -
with ¢ = N, Ay_;y = 0 and where the multi-index i = (iy,...,iy) € N¥ and |i| =i; + --- +iy. Here iy, k=1,...,N, is the level of

interpolation along the kth direction. The Smolyak algorlthm builds the interpolation function by adding a combination of 1D
functions of order i, with the constraint that the sum total (Ji| =i; + --- +iy) across all dimensions is b_etween g—N+1landgq.
The structure of the algorithm becomes clearer when one considers the incremental interpolant, A' given by [23-25]

U =0 A=u-u". (15)
The Smolyak interpolation A,y is then given by

An(f) =D (4" @@ AY)(f) = Aan() + (4" @+ @ 4)(f). (16)

lil<q li=q



X. Ma, N. Zabaras/Journal of Computational Physics 228 (2009) 3084-3113 3089

To compute the interpolant A y(f) from scratch, one needs to compute the function at the nodes covered by the sparse grid
Han

Hon=[J X' x-oxXW) (17)
g-N+1<lil<q
The construction of the algorithm allows one to utilize all the previous results generated to improve the interpolation (this is
immediately obvious from Eq. (16)). By choosing appropriate points for interpolating the 1D function, one can ensure that
the sets of points X are nested (X' c X*!). To extend the interpolation from level i — 1 to i, one only has to evaluate the func-
tion at the grid points that are unique to X', that is, at X', = X'\ X'!. Thus, to go from an order q — 1 interpolation to an order
q interpolation in N dimensions, one only needs to evaluate the function at the differential nodes AHyy given by

AHon = | J X @ 0 XT). (18)
lil=q

3.2. Choice of collocation points and the nodal basis functions

It is more advantageous to choose the collocation points in a nested fashion to obtain many recurring points with increas-
ing g. One of the choice is the Clenshaw-Curtis grid at the non-equidistant extrema of the Chebyshev polynomials [28,30,38].

For any choice of m; > 1, the sets X' = {Y}, ..., Y}, } are given by
1 ifi=1
m=9 ] ’ 19
‘ {2”+1, ifi>1, (19)

Yi:{(fcos(n(jf1)/(mi71))+1)/2, forj=1,....m;, if m>1,

) 2
J 0.5, forj=1, ifm=1. (20)

With this selection, the resulting sets are nested, i.e., Hqn C Hq.1n. The corresponding univariate nodal basis functions are
Lagrange characteristic polynomials.

1, fori=1, and

i T y-yi

G=9 1] ;= fori>1 and j=1,.. m. (21)
k=1 "0 "k
k#j

It is noted that by using this grid, the support nodes are pre-determined as in Eq. (20). Thus, this grid is not suitable if we
want to use adaptivity. Therefore, we propose to use the Newton-Cotes grid using equidistant support nodes. By using equi-
distant nodes, it is easy to refine the grid locally. However, it is well known that for Lagrange polynomial interpolation on
equidistant nodes, the error may not go to zero as the number of nodes increases due to the well-known Runge’s phenom-
enon [25]. To this end, we propose to use the linear hat function as the univariate nodal basis function [22]. The piecewise
linear hat function has a local support in contrast to the global support of the polynomial in Eq. (21), so it can be used to
resolve discontinuities in the stochastic space.
We first consider the 1D interpolation rule Eq. (11) with the support nodes defined as

1, i1,
m":{z”ﬂ, ifis1, (22)

{“, forj=1,....m; ifm>1,

Yyl —

(e ’ (23)

05, forj=1, ifm=1.

It is noted that the resulting grid points are also nested and the grid has the same number of points as the Clenshaw-Curtis
grid.
In the linear setting, the simplest choice of 1D basis function is the standard linear hat function [24,26,27]:

ay) = {1 —1y], if Ye[-1,1],

24
0, otherwise. 24

This mother of all piecewise linear basis functions can be used to generate an arbitrary aj‘? with local support [Y} — 2
Y+ 2! by dilation and translation, i.e.,
aj=1 fori=1, and (25)
a}: {1 —(mi—1)~|Y—Y;\, if [Y =Y <1/(mi—1),

. (26)
0, otherwise,

fori>1andj=1,...,m. The N-dimensional multi-linear basis functions can be constructed using tensor products as follows:
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a(Y):=a' @ ead = Ha”‘ (27)

where the multi-index j = (j;, .. .,jy) € NV and ji, k =1,...,N, denotes the location of a given support node in the kth dimen-
sion from Eq. (23). Thus, we define the functional space

Vi=span{al:ie NV je NV j, =1,... my k=1, N} (28)

as the space of piecewise multi-linear functions for a give multi-index i. Then the family of functions {a } is just the standard
nodal basis of the finite-dimensional space Vi If we want to apply the Smolyak algorithm using nodal ba51s it is straightfor-
ward to use Eq. (14). It can be rewritten as

A= (07 ) S g (29

q-N+1<lil<q
Now we can define the sparse grid interpolation space V- as

V= o V. (30)
q-N+1<lil<q
It is noted that the coefficients of the approximation in the stochastic space mainly depend on the function values at the
interpolation points. Thus they do not give much information about the regularity of the solution in the random space.
Therefore, the interpolation formulae provided above are not appropriate for an adaptive implementation.

3.3. From nodal basis to multivariate hierarchical basis

Let us return to the incremental interpolation formula Eq. (16). This formula takes advantage of the nested nature of the
grid points, X ¢ X™*1 [24]. Here, we follow closely [24] to provide a clear development of the derivation of the hierarchical
basis and the hierarchical surpluses.

We start from the 1D interpolation formula Eq. (11) using nodal basis as discussed in the previous section. By the defi-
nition of Eq. (15), we can write

A'(f) =U(f) —u(f). (31)
With
=S fv), and W) =dw (), (32)
VJ’.EX’

we obtain [24]

=Y d-f(Y)-> d-u'f)y)=> d —u(f)(Y (33)

Y]'iex" Yl'lex" Y' ex!
and, since f(Y}) — u~'(f)(Y]) = 0,VY} € X", we obtain
=" a- (F) - U HYy) (34)
Yiexy,
recalling that X', = X"\ X'~'. Clearly, X', has m!, = m; — m;_; points, since X;_; C X;. By consecutively numbering the elements

in X', and denoting the jth point of X!, as Yj, we can re-write the above equation as [24]

Zax — U ()Y (35)
%/_/

wi
J

Here, we define Wj‘i as the 1D hierarchical surplus, which is just the difference between the function values at the current and
the previous interpolation levels. We also define the set of functions a} as the hierarchical basis functions. Fig. 1 shows the
comparison of the nodal and the hierarchical basis functions [24]. Fig. 2 shows a comparison of the nodal and hierarchical
interpolation in 1D [24].

For example, in Fig. 2, if we work in the nodal basis of interpolation level 3, then the function fis approximated as from Eq.
(11)

f=fDa +f(Y3)a3 +£(Y3)a3 +f(Y3)a3 +f(Y3)az. (36)

On the other hand, the hierarchical basis for the same interpolation level from Eq. (35) is given as follows:
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0 >

Y3 Yz"! Y33 Yf )/53
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P! w§
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¥ ¥ Y Y vy
Fig. 2. Nodal (left) versus hierarchical (right) interpolation in 1D.
f=wlal + W)@ + wial +widd + wid. (37)

Please note the different numbering used for the hierarchical and nodal basis functions. It is seen that the hierarchical basis
utilizes only some of the nodal basis functions form level 1 to 3 instead of all of the nodal basis functions in level 3. It is for
this reason that we refer to this representation as the ‘hierarchical basis’.

For the multi-dimensional case, we define a hierarchical difference space

W= Viy Ié’a vi-e, (38)
k=1
where e, denotes the kth unit vector. To complete this definition, we formally set

vice =0, if i, = 0. (39)

Thus, through a new multi-index set

Bi={jeN":YFeXkforj=1,... mi k=1, N} (40)
we can obtain another basis of V4, the hierarchical basis

{al:jeB k<i}, (41)
which also leads to

W' :=span{al : j € B;}. (42)
It is clear that the following decomposition holds [26,27]:

vi :k@l,@l We = o WE (43)

This equation provides another view on the nodal basis function space Vi. Note that in Eqs. (41) and (43), * <’ refers to the
element-wise relation for multi-indexes.

We next obtain the sparse grid interpolation formula for the multivariate case in a hierarchical form. From Eq. (16), we
can write

Agn(f) = Agaan () + AAN (), (44)
AAgn(f) = > (4" @@ A") (45)
lil=q

with Ay_1y = 0. This can be further simplified as
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Apan(f)= > (4" @ 2 4") (46)
lij<q-1
and
AMan(H) => 3 (@ @@ a) - (F(Y] ..., Y]} — A an(D(Y] ..., Y1), (47)
lil=q jeB;

Here, we define
WE= (Y)Y — Agan(D(YE YY) (48)

as the hierarchical surplus, which is just the difference between the function value at a point in the current level of inter-
polation and the corresponding value at the previous interpolation level [24,26]. Eq. (47) actually provides a hierarchical sub-
space splitting of V-

Vi= o W (49)

lil<q

Thus, we can work either in the nodal basis functional space or the hierarchical basis space. For smooth functions, the hier-
archical surpluses tend to zero as the interpolation level tends to infinity as shown in Fig. 2. On the other hand, for non-
smooth functions, steep gradients/finite discontinuities are indicated by the magnitude of the hierarchical surplus. The big-

ger the magnitude is, the stronger the underlying discontinuity is. Therefore, the hierarchical surplus is a natural candidate
for error control and implementation of adaptivity.

3.4. Interpolation error
As a matter of notation, the interpolation function used will be denoted Ay.n, Where k is called the level of the Smolyak

interpolation. This is because we always start the construction from the N-dimensional multi-indexi=(1,...,1). We consider
the interpolation error in the space

Fy:={f:[0,1]" — R,D™f continues, m; < 2,Vi}, (50)
where m e NY and D™ is the usual N-variate partial derivative of order |m|:
oml
jm| _
D™ = Sym v (51)

Then the interpolation error in the maximum norm is given by [23-25]
If = A (Pl = OM ?|log,MPM ), (52)

where M = dim(H(q, N)) is the number of interpolation points.
3.5. From hierarchical interpolation to hierarchical integration

Any function u € I' can now be approximated by the following reduced form from Eq. (47):

u®Y) =Y wix)-dY). (53)

lil<q jeB;

This expression can be considered as an approximate solution of the problem in Egs. (9) and (10). It is just a simple weighted
sum of the value of the basis functions for all collocation points in the sparse grid. Therefore, we can easily extract the useful
statistics of the solution from it. For example, we can sample independently N times from the uniform distribution [0, 1] to
obtain one random vector Y, then we can place this vector into the above expression to obtain one realization of the solution.
In this way, it is easy to plot realizations of the solution as well as its PDF. On the other hand, if the Smolyak algorithm Eq.
(14)is used based on the cubature rule [29], although it is easy to calculate the mean and variance, it is difficult to extract the
value of the solution at a particular point in the random space. This is one of the advantages of applying the stochastic col-
location method based on the present interpolation rule, which allows us to obtain a visualization of the solution depen-
dence on the random variables. After obtaining the expression in Eq. (53), it is also easy to extract the mean and variance
analytically, leaving only the interpolation error.
The mean of the random solution can be evaluated as follows:

Fu@)] =3 3 wix)- / di(Y)ay, (54)
lil<q jeB; I

where the probability density function p(Y) is 1 since the stochastic space is a unit hypercube [0, 1]. The 1D integral can be
evaluated analytically:
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! 1,  ifi=1,
/0 dwdy = {1 ifi=2 (55)
2" otherwise.

This is independent of the location of the interpolation point and only depends on the interpolation level in each stochastic
dimension due to the translation and dilation of the basis functions. Since the random variables are assumed independent of
each other, the value of the multi-dimensional integral is simply the product of the 1D integrals. Denoting | a} Y)dY = I}, we
can re-write Eq. (54) as

Flu@®)]=> > wix) -1 (56)

lil<q jeB;
Thus, the mean is just an arithmetic sum of the product of the hierarchical surpluses and the integral weights at each inter-
polation point.
To obtain the variance of the solution, we need to first obtain an approximate expression for u?, i.e.,

wEY)=> " v -d(y). (37)

lil<q jeB;

Then the variance of the solution can be computed as

2
Var[u(x)] = E[u?(x)] — (Eu®)))* =Y > i) I - (Z > wix) J}) ) (58)

lil<q jeB lil<q jeB;

3.6. Adaptive sparse grid interpolation

As discussed in Section 3.3, the magnitudes of the hierarchical surpluses decay to zero quickly as the level of interpolation
increases assuming a smooth function in the stochastic space. If the smoothness condition is not fulfilled, an adaptive sparse
grid is preferred, which for example may place more points around the discontinuity region and less point in the region of
smooth variation. One way to perform adaptation and refinement is on the level of the hierarchical subspaces Wi in Eq. (42).
This leads to the so called dimension-adaptive (anisotropic) sparse grids [36-38]. This approach detects important dimen-
sions and places all the collocation points from the hierarchical subspace W**% along the important dimension j. Thus, this
method is not suitable if we want to look at the local behavior of the stochastic function. Alternatively, the adaptation and
refinement process can be performed on the level of the single hierarchical basis functions a} from Eq. (41). We then obtain a
method which, besides the detection of important dimensions, identifies and resolves singularities and local non-smooth
variations in the stochastic function [26,27,39]. In this section, we focus on the latter method and develop an adaptive sparse
grid stochastic collocation algorithm based on the error control of the hierarchical surpluses.

Before discussing the algorithm, let us first introduce some notation. The 1D equidistant points of the sparse grid in Eq.
(23) can be considered as a tree-like data structure as shown in Fig. 3. It is noted that special treatment is needed here going
from level 2 to level 3. For the nodes 0 and 1 in level 2, we only add one point along the dimension (there is only one son here
instead of two sons as is the case for all other subsequent levels of interpolation). Then, we can consider the interpolation
level of a grid point Y as the depth of the tree D(Y). For example, the level of point 0.25 is 3. Denote the father of a grid point
as F(Y), where the father of the root 0.5 is itself, i.e., F(0.5)=0.5.

Thus, the conventional sparse grid in the N-dimensional random space can be reconsidered as

N
Hon = {Y— {Yr,.. . YN} Y DY) < q}. (59)
i=1

We denote the sons of a grid point Y =(Y3,...,Yn) by
Sons(Y) ={S = (51,52,...,Sn)I(F(51),S2,...,Sv) =Y, or (51,F(Sz),....5v) =Y,..., or (51,52,...,F(Sn)) = Y}.
(60)

From this definition, it is noted that, in general, for each grid point there are two sons in each dimension, therefore, for a grid
point in a N-dimensional stochastic space, there are 2N sons. It is also noted that, the sons are also the neighbor points of the

Fig. 3. 1D tree-like structure of the sparse grid.
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father. Recall from the definition of grid points from Eq. (23) and the definition of hierarchical basis from Eq. (41) that the
neighbor points are just the support nodes of the hierarchical basis functions in the next interpolation level. By adding the
neighbor points, we actually add the support nodes from the next interpolation level, i.e., we perform interpolation from le-
vel |i] to level |i| + 1. Therefore, in this way, we refine the grid locally while not violating the developments of the Smolyak
algorithm Eq. (47).

The basic idea here is to use hierarchical surpluses as an error indicator to detect the smoothness of the solution and re-
fine the hierarchical basis functions a} whose magnitude of the hierarchical surplus satisfies [wj| > e. If this criterion is sat-
isfied, we simply add the 2N neighbor points of the current point from Eq. (60) to the sparse grid. An example of a case with
two random variables is shown in Fig. 4. It is noted that the growth of the points scales linearly with increasing dimension-
ality rather than the O(2V) tree-like scaling of the standard h-type adaptive refinement as in a random element-based frame-
work, e.g. in ME-gPC.

In the Smolyak construction, we always perform the interpolation level by level. For each level, we first calculate the hier-
archical surplus for each point, then we check whether the adaptive criterion \w}\ > ¢ is satisfied. If so, we generate the 2N
neighboring points. There is a possibility that the neighbors have already been generated by other points. Therefore, it is crit-
ical to keep track of the uniqueness of the newly generated neighboring points. We refer to these newly generated neigh-
boring points as active points. To this end, we use the data structure (set) from the standard template library in C++ to
store all the active points and we refer to this as the active index set. (set) is a kind of sorted associative container that stores
unique elements (keys). When inserting a new element, this data structure will check if the new element already exists. If so,
it will not insert the element. If not, the element is inserted according to the ordering of the elements in the (set). Due to the
sorted nature of the (set), the searching and inserting is always very efficient. Another advantage of using this data structure
is that it is easy for a parallel code implementation. Since we store all of the new points from the next level in the (set), we
can evaluate the surplus for each point in parallel, which increases the performance significantly.

In addition, when the discontinuity is very strong, the hierarchical surpluses may decrease very slowly and the algorithm
may not stop until a sufficiently high interpolation level. However, from Eq. (55), it is seen that the weights I} decrease very
quickly as the level of interpolation increases. The same is true with the hierarchical surpluses. The contribution of this term
to the mean and the variance may be neglected in comparison to a certain desired accuracy level of the statistics. Therefore, a
maximum interpolation level is always specified as another stopping criterion. It is noted here that the definition of the level
of the Smolyak interpolation for the ASGC method is the same as that of the conventional sparse grid even if not all points are
included. The first hierarchical surplus is always the function value at the point (0.5,...,0.5). There is a possibility that the
function value may be zero and thus the refinement terminates immediately. In order to avoid the early stop for the refine-
ment process, we always refine the first level and keep a provision on the first few hierarchical surpluses [26]. Therefore, let
&> 0 be the parameter for the adaptive refinement threshold. We propose the following iterative refinement algorithm
beginning with a coarsest adaptive sparse grid Gy, i.e., we begin with the N-dimensional multi-index i=(1,...,1), which
is just a point (0.5,...,0.5).

(1) Set level of Smolyak construction k = 0.
(2) Construct the first level adaptive sparse grid Gy n.
e C(Calculate the function value at the point (0.5,...,0.5);
e Generate the 2N neighbor points and add them to the active index set;
o Setk=k+1.
(3) While k < kiqx and the active index set is not empty:
e Copy the points in the active index set to an old index set and clear the active index set.
e Calculate in parallel the hierarchical surplus of each point in the old index set according to

Wi =f(Y) oY) = G (Y] Y. (61)

-
\

Fig. 4. An example of nodes and supports of a locally refined sparse grid in 2D random domain.
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Here, we use all of the existing collocation points in the current adaptive sparse grid Gy, _1 n- This allows us to evaluate
the surplus for each point from the old index set in parallel.
e For each point in the old index set, if [wi| > ¢

o Generate 2N neighbor points of the current active point according to Eq. (60);

o Add them to the active index set.

e Add the points in the old index set to the existing adaptive sparse grid Gy,,_1n. Now the adaptive sparse grid
becomes Gy, kn-
o k=k+1.

(4) Calculate the mean and the variance, the PDF and if needed realizations of the solution (see Section 3.5).

Remark 1. In practice, instead of using wi, it is sometimes preferable to use vji from Eq. (57) as the error indicator. This is
because the hierarchical surplus 1/‘ is related to the calculation of the variance. In principle, we can consider it like a local
variance. Thus, it is more sensmve to the local variation of the stochastic function than wi. In all but the first example in
Section 4, the set threshold € refers to the surpluses 1/]'. Recall that for accurate calculation of the variance in Eq. (58), both the
function and its square are interpolated independently, see Egs. (56) and (57), respectively.

Remark 2. The algorithm developed here is different from the original algorithm in [26]. In [26], the sparse grid introduced
is based on the so called maximum-norm-based sparse grid [24,25]. It assumes that the function value vanishes on the
boundary and the hierarchical surplus is calculated through a N-dimensional stencil which gives the coefficients for a linear
combination of function values at the collocation points. Generally, this kind of sparse grid is not very suitable for high-
dimensional stochastic spaces [24,25].

Remark 3. It is also noted that, in the adaptive sparse grid G, we also keep some points whose surpluses are smaller than the
threshold when they are generated from their fathers whose surpluses are larger than the threshold. In other words, we want
to keep the adaptive sparse grid balanced, the so called balanced adaptivity, see [41]. This is different from the algorithm in
[26], where all of the points whose hierarchical surplus is less than the threshold are omitted.

3.6.1. Convergence and accuracy of the adaptive collocation method

For a threshold ¢ and a fixed level g = N + k of the sparse grid interpolation, the approximation uj,(x,Y) from Eq. (53) of the
conventional sparse grid method can be rewritten as a sum of two terms uf, representing the interpolation on the adaptive
sparse grid G and u? that accounts for all of the missing points (see also Remark 3) whose hierarchical surpluses are below
the threshold e. Since for any piecewise N-linear basis function a} (Y), Ha}Hac = 1[27], we can show that the error between the
adaptive sparse grid interpolation and that of using conventional sparse grid is

= gll = udll =D > W@ - g (V)] <&Mo, (62)

lil<q jeB;
\w}\<s

where M, is the number of all missing points. When decreasing the threshold ¢, the number of missing terms M, also de-
creases (as the tolerance is reduced, more points are locally refined). Therefore, we can see that indeed the approximation
of the adaptive sparse grid interpolation converges to the conventional interpolation case when decreasing the threshold e.
Accordingly, the interpolation error when using the adaptive spare grid collocation method can be approximated by

= udl. = flu—uf, +uf, — ugll < fJu—ulll, + lu, - ugll. (63)

The first term in the equation above is the interpolation error of the conventional sparse grid collocation method (see Eq.
(52)). The second term is the error between the conventional and adaptive sparse grid collocation methods that was shown
to be of the order of O(¢). Numerical investigation of these errors are provided in Section 4.1.

Hereafter, for convenience, we use CSGC to denote the conventional sparse grid collocation method from Eq. (47) using
multi-linear basis functions and ASGC to denote the adaptive sparse grid collocation method from the algorithm introduced
in this section with the same basis functions.

4. Numerical examples

This section consists of four examples. The first example is used to demonstrate the failure of the dimension-adaptive
method when the singularity is not aligned along the grid. On the second example, we compare our method with MC and
the multi-element based method on a benchmark problem involving stochastic discontinuity. In the third example, we as-



3096 X. Ma, N. Zabaras/Journal of Computational Physics 228 (2009) 3084-3113

sess the ability of ASGC to detect the important dimension in a high-dimensional stochastic elliptic problem. In the last
example, Rayleigh-Bénard instability is considered to showcase the use of the method in physical problems.

4.1. Approximation of function with regularized line singularity

In this section, we demonstrate the ability of the ASGC method in interpolating given functions. The computed results are
compared with the CSGC method. We consider the function on [0, 1]*:

1

fxy) = 03—y 1o’ (64)
where & = 1071, We first construct the interpolant .4, (f), then we randomly generate 1000 points in [0, 1]* and finally com-
pute the error as follows:

e~ max If(x) — Aga(f) (%), (65)

The function of interest has a line singularity that is not along the grid lines, see Fig. 5. From the convergence plot with re-
spect to ¢ on the left of Fig. 6, it is seen that the error converges nearly exponentially fast with respect to ¢. On the right of
Fig. 6, the convergence rate is shown with respect to the needed number of points for different thresholds. For example, it is
noted that for threshold ¢ = 10~ more points are needed than when using the other two thresholds shown but a higher level
of accuracy is obtained. Also note that much less points are needed in the ASGC than in the CSGC to achieve the same accu-
racy. The highest accuracy achieved for ASGC is 6.09 x 10~3, where the interpolation level is 19 and the number of points is
16,659 as opposed to 6,029,313 points using the same level of CSGC. The evolution of the adaptive grid for threshold ¢ = 103
is shown in Fig. 7. The line of discontinuity is automatically detected by the ASGC method.

Since the line singularity is not along any dimension, it is expected that the dimension-adaptive (anisotropic) sparse grid
method [36,38] fails in this case. The results are shown in Fig. 8, where the algorithm is implemented using the MatLab
Sparse Grid Interpolation Toolbox developed by Klimke [42]. From the convergence plot, it is interesting to note that the con-
vergence rate is nearly the same as that of the CSGC method in Fig. 6. This is because the line singularity results in the same
importance of both dimensions and the anisotropic method thus puts points in all dimensions. This is seen from the sparse
grid in Fig. 8, where the grid is nearly the same as the full-tensor product case. Therefore, this example verifies that if the
singularity is not exactly along the dimensions, the dimension-adaptive sparse grid method is not applicable and identifies
the need to develop a different adaptive strategy that is working directly on the hierarchical basis as the one presented in this
paper.

4.2. Kraichnan-Orszag (K-0) problem

The transformed Kraichnan-Orszag three-mode problem can be expressed as [17]

d

%:J’ﬂ/a

d

%: —Y2Ys3,

d

A ©

subject to initial conditions

Fig. 5. Line singularity: Comparison of the exact (left) and interpolant (right) functions using the ASGC method with threshold &= 103,
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Fig. 8. Line singularity: (left) Convergence of the dimension-adaptive method; (right) Dimension-adaptive sparse grid.

when the initial conditions cross these two planes [17]. Here, we choose the random initial conditions subject to the uniform
distribution Y ~ U(—1, 1). In this formulation, the initial conditions cross the discontinuity plane and thus as expected the
gPC method fails in computing the solution to this problem. This problem was originally solved using ME-gPC and ME-
PCM in [17,18,31]. Here, we are addressing this problem using the ASGC method. The time integration of Eq. (66) is per-
formed using a fourth-order Runge-Kutta scheme. In all computations described in this section, a time step At=0.01 was
used. Error convergence and comparison of computation cost with both ME-gPC and ME-PCM are conducted.

4.2.1. One-dimensional random input
At first, we study the following random initial conditions:

¥1(0) =1.0, y,(0) = 0.1Y(0; ), y5(0) = 0. (68)

In Fig. 9, we show the evolution of the variance within the time interval [0, 30] (short time behavior). For comparison, the
results of gPC are also included. The ‘exact’ solution is obtained using a quasi-random Sobol (MC-SOBOL) sequence with 10°
iterations. Due to the discontinuity, the result from MC-SOBOL is much more accurate than the standard MC simulation di-
rectly sampling from the uniform distribution. It is seen that the gPC begins to fail at time t ~ 8, while the ASGC method
converges even with a large threshold ¢ = 0.1. From the adaptive sparse grid in Fig. 9, it is noted that even though most of
the points are refined as a result of the small threshold ¢, most of the refinement 